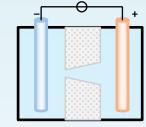


A. Kiy^{1*}, S. Dutt¹, B. I. Karawdeniya¹, Y. M. Nuwan D. Y. Bandara¹, C. Notthoff¹, and P. Kluth¹

¹Department of Electronic Materials Engineering, Research School of Physics, Australian Nation University, Canberra, ACT 2601, Australia

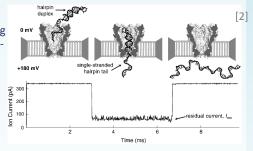
Introduction


- Development of a novel electrochemical nanopore sensor for disease detection and monitoring.
- Combination of recent advancements in ion track technology, nanopore fabrication, biochemistry, microfluidic systems, and lab-on-a-chip devices.
- Affordable, high precision sensing of biomarkers related to diabetes and MS in bodily fluids such as blood or saliva.

Nanopore membrane

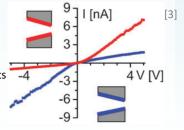
- Conical nanopores in silicon dioxide (silica, SiO₂)
- ➤ Length: <800 nm
- ➤ Base diameter: >335 nm
- > Tip diameter: >20 nm
- Single pores or 1e8 pores/cm²

Measurement setup



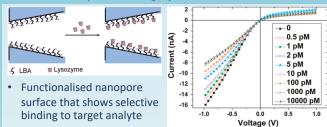
- Electrochemical cell
- Two chambers containing an electrolyte separated by the nanopore membrane
- An applied voltage causes anions and cations to flow through the nanopores and an ionic current can be measured

Theoretical background

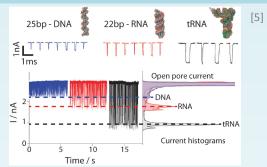

Current blocking

- Particles passing through a nanopore partially block it
- Ionic current decreases

Current rectification


- Cone shape results in higher charge flow in one direction
- Negatively (blue) or positively (red) charged pore surface acts as cation or anion trap
- Asymmetric current

Nanopore sensing by current rectification


National

[4]

- > Target analyte attaches to nanopore surface
- Surface charge changes
- Current rectification changes

Single-molecule detection by resistive pulse sensing

- Analyte passing through a nanopore causes a resistive pulse
- > Frequency and intensity of these pulses can be used to determine concentration and size of analyte

Filtration and purification of liquids

 Charge- and size-based separation of macromolecules by tuning the size and surface charge of the nanopores

Possible applications:

- Purification of water containing toxic dyes in industrial wastewater without the use of chemicals
- Separating proteins and antibodies out of bodily fluids for further analysis

Summary and outlook

- Silica nanopore membranes have not yet been utilised for sensing applications
- · Combines the advantages of 2D materials and polymers
- Very stable and robust
- > Easy to functionalise
- > Excellent signal-to-noise ratio
- Lab-on-a-chip capable

Future work:

Optimise sensing platform to precisely detect biomarkers related to diabetes and MS

References

- [1] See S. Dutt: Versatile nano-porous silicon dioxide membranes
- [2] Derrington, I. M. et al. Proc. Natl. Acad. Sci. **2010**, 107 (37), 16060–16065.
- [3] Howorka, S. et al. Chem. Soc. Rev. 2009, 38 (8), 2360.
- [4] Cai, S.-L. et al. Biosens. Bioelectron. 2015, 71, 37-43.
- [5] Miles, B. N. et al. Chem. Soc. Rev. 2013, 42 (1), 15-28.