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With the fast development towards continuous glucose monitoring (CGM) and artificial           
pancreas, diabetes healthcare is now entering a big data era. There is great potential for               
data-driven research, and some applications such as short-term glucose prediction and           
diabetic retinopathy detection are currently being investigated using machine learning          
techniques. Our research focuses on using a self-attention mechanism​1 for sequential data            
modeling in order to achieve short-term glucose prediction in type 1 diabetes. We use CGM,               
insulin, food intake and heart rate data from the OhioT1DM dataset as inputs, map them into                
deep complex representations using self-attention mechanism, and predict the future CGM           
profile in 30min/1h/2h horizons. Compared to the existing studies in this field, our study              
contributes mainly in two aspects. First, the predictive performance is higher than the existing              
baseline​2​. ​Second, unlike all the existing studies, our method is able to provide information on               
which parts of the input data were important for the prediction. By this added model               
interpretability​3​, we hope to contribute towards the adoption and trust of short-term glucose             
prediction models in real-life. 
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